Evidence that Robots Trigger a Cheating Detector in Humans

Alexandru Litoiu, Daniel Ullman, Jason Kim, Brian Scassellati
Department of Computer Science, Yale University

Introduction

- Short et al. found that in a game between a human participant and a humanoid robot, the participant will perceive the robot as more agentic and having more intentionality if it cheats than if it plays without cheating.
- However, in that design, the robot that actively cheated also generated more motion than the other conditions.
- We disambiguated between the following two possible causes of the effect:
 - The additional motion of the cheating behavior caused greater attributions of agency.
 - A cheating detector that has been shown to trigger towards humans also triggered towards the cheating robot, causing greater attributions of agency.
- Our experimental design kept constant the amount of motion while varying the directionality of the cheat from adversarial to pro-social.
- 83 participants in between-participant design.
- Salience, engagement, and attributions varied as the direction and magnitude of the cheat changed, supporting the cheating detector hypothesis.

Experimental Design

Procedure

- Nao robot played 30 rounds of rock-paper-scissors with each participant.
- No cheating occurred in the control rounds.
- The robot would cheat on the first two possible occasions in the cheating rounds, in accordance with the experimental condition.

<table>
<thead>
<tr>
<th>ROUND #</th>
<th>ROUND TYPE</th>
<th>Control Rounds</th>
<th>Cheating Rounds</th>
<th>Control Rounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NAO robot</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>NAO robot</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>NAO robot</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>NAO robot</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>NAO robot</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>NAO robot</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Physical Setup

Robot Gestures

Cheat Salience – Written Responses

Self-Reported Gesture Change

- Participants were asked "Did anything about Nao’s behavior seem unusual? What?" and "What do you believe this experiment is about?"
- Bars represent participants that self-reported the robot’s gesture change in either question. Participants self-reported the gesture change significantly more frequently in the WIN condition.

Attributions – Fairness, Honesty

"Fair" Likert Question

- Participants were asked to rate the robot on "Fair" and "Responsive" Likert questions in the post-study questionnaire.
- The robot in the WIN condition was significantly less "Fair" and "Responsive" than in the other conditions.

"Intelligent" Likert Question

- Participants were asked to rate the robot on "Intelligent" and "Responsive" Likert questions in the post-study questionnaire.
- The robot in the LOSE condition was significantly less "Intelligent" and "Responsive" than in the other conditions.

Results

Cheat Salience – Video Reactions

Notice Gesture Change

- Breakdown of participants’ level of noticing the gesture change in terms of exhibiting a startle response and self-reporting that the robot changed its gesture.
- Significance results refer to the total number of participants that "noticed" the gesture change, represented by the summation of the stacks in a condition.
- Significantly fewer participants noticed the gesture change in LOSE than in WIN.

Utterance After a Cheat

- Graph represents percentage of participants that emitted an utterance after at least one of the cheating events.
- The dashed red line represents the baseline level of utterances for non-cheating rounds, across conditions.
- Participants in the WIN condition were significantly more likely to emit an utterance, usually in protest.

Discussion

- We were able to replicate Short et al.’s finding that cheating to win is salient enough to be self-reported.
- Based on self-reported responses, cheating to win is significantly more noticed or salient than the other conditions.
- However, an equal amount of participants noticed the gesture change across the three least prosocial conditions, indicating the difference in self-reported written responses was due to salience, not lack of noticing the gesture change.
- Engagement, measured by prevalence of utterances, mirrored the salience results. Participants protested in the WIN condition significantly more.
- Participants felt that the adversarial WIN robot was significantly less fair and less honest than in the other conditions.
- Participants interpreted that the prosocial LOSE condition was less intelligent and less responsive.

Conclusion

- Salience, engagement, and attributions vary as the direction and magnitude of the cheat changes.
- This rules out the hypothesis that the added motion of the “active cheat” in Short et al. causes mental attributions and supports the hypothesis that a cheating detector was triggered by the adversarial cheat of the robot.

For all graphs, * represents p < 0.05, ** represents p < 0.01, *** represents p < 0.001, except for in the “Intelligent” graph where * represents p < 0.008. Error bars represent standard error.

This work was supported by the National Science Foundation award #1117801 (Manipulating Perceptions of Robot Agency) and award #1139078 (Socially Assistive Robots).