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ABSTRACT

The research area of using robots to coach complex physical
skills is underserved. Whereas robots have been used exten-
sively in the form of robotic orthoses to rehabilitate early
trauma patients, there is more that can be done to develop
robots that help children, the elderly and late-stage rehabili-
tation patients to excel at physical skills. In order to do this,
we must develop robots that do not actuate on the students,
but coach them through hands-off modalities such as verbal
advice and demonstrations. This approach requires sophis-
ticated perception, and modeling of the student’s movement
in order to deliver effective advice. Preliminary results sug-
gest that these goals can be achieved with consumer-grade
sensing hardware. We present planned future work towards
achieving this vision.
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1. INTRODUCTION

Much research has been conducted in rehabilitation robotics
to develop robotic orthoses for early rehabilitation following
traumatic injury. These orthoses, such as the Hacoma Loko-
mat, attach to the human body in order to help it actuate.

Immediately after lower extremity trauma, many treat-
ment centers make use of Hocoma’s Body Weight Supported
Treadmill Training (BWSTT) orthosis, the Lokomat[3]. Pa-
tients using BWSTT orthoses are strapped into a bodyweight-
support harness on top of a treadmill, and their legs are
actuated by the BWSTT to walk atop the treadmill. The
Lokomat has been shown to work as well as traditional phys-
iotherapy for stroke patients, while requiring a much light-
ened physiotherapist load[2].

However, there is an opportunity to develop robots that
not only help early trauma patients to recover typical mo-
tor function, but that also help people with typical motor
function to excel at physical skills. For example, there is an
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opportunity to develop more effective late-stage rehabilita-
tion tools for patients that are at the point of walking around
freely. As children who are proficient at a physical skill are
more likely to stay active well into their teenage years and
beyond|[6], robots should coach children to become excellent
at physical skills, such as shooting a basketball or hitting a
tennis serve.

Outside of early rehabilitation, we do not want our human
or robot coaches to touch us, so in these domains we no
longer require an orthosis that attaches onto the patient,
but rather a coach that teaches the student from a distance.
We call this contact-free approach to training physical skills,
“Robotic Coaching of Physical Skills.”

Early work in this area often takes a minimalist route in
terms of perception and understanding, following the paradigm
of robots performing physical demonstrations, and asking
humans to replicate the movement without the robot hav-
ing a deep understanding of the human’s motion. This work
is generally applied to elderly fitness coaching, pediatric fit-
ness coaching, and rehabilitation. [1] have used the Nao
robot to demonstrate gestures to elderly patients, helping
them to remain fit, and [5] have shown that children were
attentive to the robot coach that demonstrated a physical
dancing task.

However, little work has been done in developing robotic
systems that can perceive and understand human move-
ments to the point of giving effective advice on how best
to improve. There are a number of required functions that
a robot must perform in order to achieve this goal, which
must be investigated by the following research questions:

Q1. What modalities best balance accuracy and unobtru-
siveness in a perception suite aiming to observe com-
plex physical skills that are performed by a human?

Q2. What algorithms effectively quantify problems and also
mine the inter-dependencies between these problems in
a motion?

Q3. Given these interdependencies, what algorithms effec-
tively prioritize the order in which the problems should
be addressed by the human for most rapid improve-
ment?

Q4. What techniques should be employed to effectively com-
municate prioritized advice to the human through ver-
bal advice and demonstration?

In the following sections, we discuss present and future
work towards this end.



2. PRESENT WORK

Our present work focuses on physical skills possessing
complex and interwoven sub-movements involving the en-
tire body, and that have a clear supervisory signal indicat-
ing whether the skill was a success. Basketball possesses the
aforementioned characteristics, and is popular with children
across all socioeconomic demographics. As such, we chose
the basketball application domain, where we use a Nao robot
to teach children how to shoot a basketball from a fixed po-
sition, according to the setup shown in Figure 1. We track
the skeleton of the student using a Kinect sensor, and track
whether the ball successfully entered the hoop using a Shot-
Tracker net sensor. The robot then provides physical and
verbal demonstrations to coach the student.

Thus far, we have developed an operational perception
suite (Q1), developed a problem quantification algorithm
(Q2), and explored preliminary data modeling techniques for
identification of problem salience, and prioritization (Q3).
More information about this work can be found in [4].

In order to test the accuracy of the Kinect sensing suite
(Q1), we performed a pilot study in which we recorded 521
free throws from 11 participants. Each recording entailed a
40 dimensional vector time-series of joint-angles throughout
the duration of the motion, as well as a supervisory success
flag of whether the shot entered the basket. For example,
one of the 40 dimensions would be a time-series of the joint
angle of the right knee throughout the shot.

We used a simple, heuristic approach in order to test
whether the current sensing suite was sufficiently accurate to
inform an understanding of the student’s motion that could
lead to useful advice. After pre-processing (smoothing and
discretization), we used a supervised machine learning ap-
proach to train a classifier to predict whether a shot would
enter the basket based on the student’s shooting movement.
If a classifier is able to accurately predict whether a motion
would be successful, then the data is sufficiently nuanced to
be separable into good and bad examples, and it would most
likely be possible to devise an algorithm to prioritize prob-
lems (Q3) and effectively advise on how to improve (Q4).

Using a Support Vector Machine with a Radial Basis Ker-
nel, we were able to classify shooting motions better than al-
ways predicting the most likely outcome that the ball would
not go into the basket: 82.6% versus 71.8%, respectively on
the testing set. This leads us to believe that the data col-
lection method is promising. However, we have noticed that
the wrist joint angle, which is crucial to this particular mo-
tion, is noisy, and occasionally occluded by the basketball.
As such, we plan to add an additional wrist sensor to the
perceptual setup, and expect that this will improve results.

We have also begun work on a physical demonstration sys-
tem for the Nao robot. Thus far, the Nao robot is able to
maintain static stability while imitating a student’s gesture,
as recorded by the Kinect. We have found that the Nao
robot is a plausible candidate for teaching the motion, as
it has sufficiently fine motor control to demonstrate motion
differences between both participants with very large differ-
ences in skill level, and competitively trained participants
with very similar motions. There are some issues regarding
the differing dynamics of the Nao compared with a human.
We have come up with a number of heuristics to account for
these thus far, for example using the Nao hand open/close
behavior to approximate the human wrist.
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Figure 1: Setup for the basketball shooting application domain.

3. FUTURE WORK

Our goal is to conduct research on all of the questions
listed in Q1-Q4. We first plan to supplement the sensory
suite with a wrist angle sensor in the hopes of achieving
a near-perfect classification rate of shooting motion success
(Q1). Once this step is completed, we will investigate the
suitability of varying complexities of machine learning ap-
proaches to model the inter-relationships between problems
in a motion (Q2), and prioritize the order in which they
should be fixed (Q3), including regressions and more com-
plex probabilistic graphical models such as Bayesian net-
works. We plan to expand on our current demonstration
system by adding the capability for the robot to exaggerate
a problem, as well as to give verbal advice (Q4).

We are planning a study to test the effectiveness of the
robot in giving prioritized advice based on the output of
our prioritization model, versus un-prioritized advice. The
principal outcome measure will be the shooting percentage
increase of the student after the advice has been delivered,
with secondary measures being self-reported desire to prac-
tice again, engagement, and attributions toward the robot.
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