
ScazLab

Linux Scripting
Core Skills That Every Roboticist Must Have

1

Alex Litoiu
alex.litoiu@yale.edu

Thursday, November 14, 13

mailto:alex.litoiu@yale.edu
mailto:alex.litoiu@yale.edu

Scazlab

2

Topics Covered

• Linux Intro

- Basic Concepts

- File system

• Bash Scripting Basics

- Basic Syntax

- Basic commands

- Additional Syntax

• Advanced Bash Scripting

- Job scheduling

Thursday, November 14, 13

ScazLab

3

1
Linux Intro

Thursday, November 14, 13

Scazlab

4

Why Linux?

• Free
• Well-designed
• Flexible
• Standard in academia
• The best technology firms use it
• Used in 92% of 500 world’s fastest computers

Thursday, November 14, 13

Scazlab

5

Linux History - Unix Growth
and Fragmentation

• Unix created in 1969 at Bell Laboratories (Ken Thompson and
Dennis Ritchie)

• First operating system ported to C (Thompson and Ritchie)
• Led to it being the first portable OS
• Became very popular but fragmented, as vendors spun off their

own Unix versions, optimized to their own hardware

Thursday, November 14, 13

Scazlab

6

Linux History - Family Tree

Thursday, November 14, 13

Scazlab

6

Linux History - Family Tree

Thursday, November 14, 13

Scazlab

6

Linux History - Family Tree

Linux

Thursday, November 14, 13

Scazlab

6

Linux History - Family Tree

Linux

Thursday, November 14, 13

Scazlab

6

Linux History - Family Tree

Linux
OS X

Thursday, November 14, 13

Scazlab

7

Linux History - Some
Consolidation

• In 1985, POSIX (Portable Operating System Interface)
standard came about, allowing a program to run on any
POSIX systems

- API to Kernel
- Shells bundled with OS
- Utility interfaces

• In 1991, Linus Torvalds released Linux, which has steadily
become the most popular open-source descendant of Unix

Thursday, November 14, 13

Scazlab

8

Linux Distributions

• Even within Linux, many different distributions
• Same:

- Linux Kernel
• Different:

- Package manager
- Windowing system
- Packages included

Thursday, November 14, 13

Scazlab

9

Linux Distributions Chart

Thursday, November 14, 13

Scazlab

9

Linux Distributions Chart

Thursday, November 14, 13

Scazlab

9

Linux Distributions Chart

Ubuntu and Offshoots

Thursday, November 14, 13

Scazlab

9

Linux Distributions Chart

Ubuntu and Offshoots

Thursday, November 14, 13

Scazlab

9

Linux Distributions Chart

Debian and Offshoots

Ubuntu and Offshoots

Thursday, November 14, 13

Scazlab

10

Linux Basic Concepts

• Everything in Linux is a file (identified by a path) or a process (identified by a
PID)

• Examples of Processes:

- Bash Shell

- Browser

• Examples of Files:

- essay.txt (arbitrary data file)

- /dev/ttyUSB0 (Unix special file - USB interface)

- /tmp/.X11-unix/X0 (Unix special file - Socket File)

Thursday, November 14, 13

Scazlab

11

Linux File Structure - Binaries

/
/boot - The startup files and the kernel, vmlinuz
/bin - Common programs, shared by the system, all users
/sbin - Programs for use by the system and the system
administrator.
/usr - Programs, libraries, documentation etc. for all user-related
programs.
/lib - Library files, includes files
/opt - Typically contains extra and third party software
...

Thursday, November 14, 13

Scazlab

12

Linux File Structure - Config
and System State

...
/etc - Most important system configuration files are in /etc
/tmp - Temporary space for use by the system, cleaned upon
reboot
/var - Storage for all variable files and temporary files created by
users, such as log files
...

Thursday, November 14, 13

Scazlab

13

Linux File Structure - Other

...
/home - Home directories of the common users
/root - The administrative user's home directory

/dev - Contains references to all the CPU peripheral hardware

Thursday, November 14, 13

Scazlab

14

Linux File Ownerships

drwx------ 14 alexlitoiu staff 476 Oct 14 13:29 Documents

ownerpermissions

number of links
inside directory

group

size in bytes

last modified

document
name

Thursday, November 14, 13

Scazlab

15

Linux Change File Ownerships

• The owner of a file, or the administrator can change the owner of
the file

• $ chown new_owner file_name

• Can also change the group using:
• $ chgrp new_group file_name

Thursday, November 14, 13

Scazlab

16

Manage a User’s Groups

• /etc/group is the file that contains list of all groups, and the users in
each one

• $ groups user to list the groups that a user is in

• $ groupadd new_group to add a new group to the system

• $ groupdel old_group to remove a group to the system

• $ gpasswd -a user group add user to group

• $ gpasswd -d user group delete user from group

Thursday, November 14, 13

Scazlab

17

Important Groups

Group Files affected Purpose

audio /dev/audio, /dev/snd/*, /dev/rtc0 Direct access to
sound hardware

disk /dev/sda[1-9], /dev/sdb[1-9] Access to block
devices

optical /dev/sr[0-9], /dev/sg[0-9] Access to optical
devices (CD/DVD)

video /dev/fb/0, /dev/misc/agpgart Access to video
capture hardware

lp /var/cache/cups, /var/spool/cups, /dev/
parport[0-9]

Access to printer
hardware

Thursday, November 14, 13

Scazlab

18

Linux File Permissions

d rwx r-x r-x{ { {

owner
group

other
users

Permissions
r: read
w: write
x: execute

{

file-typeFile-type
-: regular file
d: directory
p: named pipe
s: socket
c: character
device
b: block device

Thursday, November 14, 13

Scazlab

19

Linux File Permission
Representations

Symbolic Binary Octal English
- --- --- --- 0 000 000 000 0000 No permissions

- --x --x --x 0 001 001 001 0111 Execute

- -w- -w- -w- 0 010 010 010 0222 Write

- -wx -wx -wx 0 011 011 011 0333 Write, Execute

- r-- r-- r-- 0 100 100 100 0444 Read

- r-x r-x r-x 0 101 101 101 0555 Read, Execute

- rw- rw- rw- 0 110 110 110 0666 Read, Write

- rwx rwx rwx 0 111 111 111 0777 Full

Thursday, November 14, 13

Scazlab

20

Changing File Permissions
Symbolic Method
• $ ls -l to get the file permissions in your current directory

• $ chmod mode file

• Mode has 3 sections:

- Access Class: a (all), u(user), g(group), o(others)

- Operator: + (add access), -(remove access), = (set exact access)

- Access Type: r (read), w (write), x (execute)

Examples:

$ chmod a+r lorem.txt (add read access to all users)

$ chmod og-xw lorem.txt (remove execute, write access to other and group)

Thursday, November 14, 13

Scazlab

21

Changing File Permissions
Absolute Mode

• $ chmod mode file

• Mode is the octal representation of permissions
Examples:
$ chmod 0700 lorem.txt (set permissions to - rwx --- ---)
$ chmod 0644 lorem.txt (set permissions to - rw- r-- r--)

Thursday, November 14, 13

ScazLab

22

2
Bash Scripting

Thursday, November 14, 13

ScazLab

23

What Shell Am I Using?

• $ echo $SHELL to determine which shell you are using
• $ cat /etc/shells to list your system’s available shells
• $ chsh -s shell username to change your shell to
- For example, $ chsh -s /bin/ username to change your

shell to csh

Thursday, November 14, 13

ScazLab

24

What is Bash?

• Bash is a type of Shell - a process that:
- displays a prompt
- reads a command
- process the given command
- then execute the command

• Written in 1989 by Brian Fox as replacement for Bourne Shell (sh)
• Default shell on Linux and Mac OS X

Thursday, November 14, 13

ScazLab

25

Executing Path Binaries in Bash

• Example: $ date "+DATE: %Y-%m-%d TIME: %H:%M:
%S"

- DATE: 2013-11-14 TIME: 15:43:02
• Bash checks the directories in the $PATH variable for a

binary named date
• Finds it in /bin/
• Executes /bin/date, with parameter "+DATE: %Y-%m-%d

TIME: %H:%M:%S"

Thursday, November 14, 13

ScazLab

26

Executing Binaries - Absolute
Path

• Can execute a binary using the absolute path of the file
• $ /home/FredStevens/Documents/runExperiment “all

trials”

• /home/FredStevens/Documents/runExperiment is the full
path to the binary

• “all trials” is parameter given to the program
• equivalent to $ ~/Documents /runExperiment “all trials”

Thursday, November 14, 13

ScazLab

27

Executing Binaries - Relative
Path

• Can also use the relative path of the file
• $ /home/FredStevens/Documents/runExperiment “all

trials”

• If you are in /home/FredStevens/ can use
- $./Documents/runExperiment “all trials”

• If you are in /home/FredStevens/Documents/ can use
- $./runExperiment “all trials”

Thursday, November 14, 13

ScazLab

28

Common Binaries
• $ ls list files in current directory

- $ ls directory_name list files in directory directory_name

• $ pwd echo the current directory

• $ echo string print out the given string

• $ rm filename remove file

• $ cp source_file dest_file copy source_file to dest_file

• $ mv source_file dest_file move source_file to dest_file

• $ mkdir directory_name create directory directory_name

• $ rmdir directory_name removes the directory directory_name

• $ kill pid kill the process with PID number pid

Thursday, November 14, 13

ScazLab

29

Ways of Running Bash Code

Many ways to run bash code:
1.Type in some bash code, and press enter
Given a bash script file:
2.Run script using $ bash mybashscript.sh
3.Run script like a binary, if the file has

 #! /bin/bash
 as the first line of the file
- Run script using $./mybashscript.sh

echo “Hello World”
echo “Files in cur dir:”
ls

mybashscript.sh

Directly

Using Script

Thursday, November 14, 13

ScazLab

30

Bash Syntax - Variables

#!/bin/bash
 STRING="HELLO WORLD!!!"
 echo $STRING

$./hello_world.sh
HELLO WORLD!!!

hello_world.sh

execution

• Assign variables using $ VARIABLE=”STRING”

Thursday, November 14, 13

ScazLab

31

Bash Syntax - Local Variables

#!/bin/bash
VAR="global variable"
function locfunc {

local VAR="local variable"
echo $VAR

}
echo $VAR
locfunc
echo $VAR
$./variables.sh
global variable
local variable
global variable

variables.sh

execution

• Assign local variables using $ local VARIABLE=”STRING”

Thursday, November 14, 13

ScazLab

32

Bash Syntax - Exported
Variables

• If you want a variable from your shell to also be known by sub-processes,
use export

• $ export PYTHONPATH=/home/alexlitoiu/extra_python_libraries/

• $./python

• The python process will now know to also look in that folder when looking
for files

Thursday, November 14, 13

ScazLab

33

Bash Syntax - Passing
Parameters

#!/bin/bash

echo $1 $2 $3
echo $@
echo #@
$./arguments.sh My three parameters
My three parameters
My three parameters
3

arguments.sh

execution

• Access parameters using $1 $2 etc.

Thursday, November 14, 13

ScazLab

34

Bash Syntax - If Statements

#!/bin/bash
directory="./BashScripting"

bash check if directory exists
if [[-d $directory]]; then
	 echo "Directory exists"
else
	 echo "Directory does not exist"
fi

$./if_then_else.sh
Directory does not exist
$ mkdir BashScripting
$./if_then_else.sh
Directory exists

if_then_else.sh

execution

• Use if, then, else, fi for if statements

Thursday, November 14, 13

ScazLab

35

Bash Syntax - Arithmetic
Comparisons

C Operator Bash Operator

< -lt

> -gt

<= -le

>= -ge

 == -eq

!= -ne

Thursday, November 14, 13

ScazLab

36

Bash Syntax - Arithmetic
Comparisons

#!/bin/bash
num1=5
num2=7

if [[$num1 -lt $num2]]; then
	 echo "num1 < num2"
fi

$./comparison.sh
num1 < num2

comparison.sh

execution

Thursday, November 14, 13

ScazLab

37

Bash Syntax - String
Comparisons

Bash Operator In Words

 = equals

!= doesn’t equal

> greater than

< less than

-n not empty

-z empty

Thursday, November 14, 13

ScazLab

38

Bash Syntax - String
Comparisons

#!/bin/bash
string1=”This is a non-empty string”

if [[-n $string1]]; then
	 echo $string1
fi

$./comparison.sh
This is a non-empty string

comparison.sh

execution

Thursday, November 14, 13

ScazLab

39

Bash Syntax - String
Comparisons

#!/bin/bash
string1=”This is a non-empty string”
test=1

if [[-n $string1 && ($test -eq 1)]]; then
	 echo $string1
fi

$./comparison.sh
This is a non-empty string

comparison.sh

execution

Thursday, November 14, 13

ScazLab

40

Bash Syntax - File Testing

Bash Operator Tests For

-d filename directory existence

-e filename file or directory existence

-f filename file existance

-O filename file exists and owned by user

-r filename file is readable

-w filename file is writeable

-X filename file is executable

Thursday, November 14, 13

ScazLab

41

Bash Syntax - For Loop

#!/bin/bash
for f in $(ls /var/); do

echo $f
done

$./for.sh
agentx
at
audit
...

for.sh

execution

Thursday, November 14, 13

ScazLab

42

Bash Syntax - For Loop

#!/bin/bash
COUNT=1
while [[$COUNT -le 5]]; do

echo $COUNT
let COUNT=COUNT+1

done

$./while.sh
1
2
3
4
5

while.sh

execution

Thursday, November 14, 13

ScazLab

43

Bash Syntax - Bash Functions
function afunc {
 echo "Inside afunc"
 for param in $@; do
 echo $param
 done
}

afunc a b c d
afunc

$./functions.sh
Inside afunc
a
b
c
d
Inside afunc

functions.sh

execution

• Access parameters same way as to the
bash script: $1, $2, $@ etc.

• Call a function using $ func_name
param_1 param_2

Thursday, November 14, 13

ScazLab

44

Bash Syntax - Quotes

• Double Quotes, “”, allow $, ` and \ but no other special
characters

- $ echo “$((5+3)) `whoami` ”

- Output: 8 alexlitoiu
• Single Quotes, ‘’, will not allow any special characters. Everything

inside the quotes gets printed, literally
- $ echo ‘$((5+3)) `whoami` ’

- Output: ‘$((5+3)) `whoami` ’

Thursday, November 14, 13

ScazLab

45

Bash Syntax - Arithmetic

• Assign arithmetic result to a variable using “let” (note the lack of $
symbol)

- $ let VAR=VAR+3

• Use arithmetic within a string, or expression using $((arithmetic))
- $ echo ‘VAR + 2 is $((5+2))’

- “VAR + 2 is 7

Thursday, November 14, 13

ScazLab

46

Bash Syntax - Data Streams

• Three standard streams
- Standard Input (stdin) reads data
- Standard output (stdout) outputs data
- Standard error (stderr) outputs errors

• All three default to the terminal window (reading from it and
writing to it)

• All three streams can be redirected

Thursday, November 14, 13

ScazLab

47

Bash Syntax - Redirecting
STDOUT

• Output to a file using > or 1>(overwrites)
- $ ls > ls_file

- $ ls 1> ls_file

• Append to a file using >>
- $ ls >> ls_file

• Both methods create the file if it doesn’t exist
• Silence output by outputting to /dev/null
- $ ls > /dev/null

Thursday, November 14, 13

ScazLab

48

Bash Syntax - Redirecting
STDERR

• Output stderr to a file using 2> (overwrites)
- $ error_prone_process 2> err_file

• Output stderr to same source as stdout using 2>&1
- $ ls 1>output_file 2>&1

• Silence stderr using
- $ ls 2> /dev/null

Thursday, November 14, 13

ScazLab

49

Bash Syntax - Redirecting
Both STDOUT and STDERR

• To redirect all output (both stdout and stderr) use &>
- $ my_process &> output_file

• To silence a process, redirect both stdout and stderr to /dev/null
- $ yes &>/dev/null

Thursday, November 14, 13

ScazLab

50

Bash Syntax - Chaining Output
Using Pipes

• Use the output of one process as the input of another using |
- $ ps -ef | grep “Chrome”

- $ cat ~/Desktop/words.txt | sort | tail -n 1

Thursday, November 14, 13

ScazLab

51

3
Advanced Bash

Thursday, November 14, 13

ScazLab

52

Bash Jobs

• So far, we have seen the shell run one process at a time
• However, it’s possible to run multiple
• Key states that a process may be in
- Running in Foreground (everything so far)
- Running in Background
- Suspended / Stopped
- Terminated

Thursday, November 14, 13

ScazLab

53

Bash Jobs - Running in
Foreground

• To run in foreground, run the process normally
- $ /usr/bin/firefox

• At most one process may run in the foreground

Thursday, November 14, 13

ScazLab

54

Bash Jobs - Running in
 Background

• To run in background, run the process with an &
- $ /usr/bin/firefox &

- [1] 27070

{

job number

{

PID (Process ID)

Thursday, November 14, 13

ScazLab

55

Bash Jobs - Quitting
Processes

• To quit foreground process use Ctrl+C or Ctrl+\ for additional
core dump

• To quit background process use kill command in foreground
• $ kill %1 (kill job with job number 1)
• $ kill 27070 (kill job with PID 27070)

Thursday, November 14, 13

ScazLab

56

Bash Jobs - Suspending
Processes

• To suspend foreground process use Ctrl+Z
• To suspend background process use kill command in

foreground
• $ kill -20 %1 (suspend job with job number 1)
• $ kill -20 27070 (suspend job with PID 27070)

Thursday, November 14, 13

ScazLab

57

Bash Jobs - Changing Process
States

1.Check the states of all of the processes (jobs)
- $ jobs

[1]- Running yes >&/dev/null &
[2]+ Stopped tail -f mod.sh

means
it’s running

in the
background{

Thursday, November 14, 13

ScazLab

58

Bash Jobs - Changing Process
States

[1]- Running yes >&/dev/null &
[2]+ Stopped tail -f mod.sh

2.To move tail to background
- $ bg %2 or $ bg +

3.Check the state of your jobs again
- $ jobs

[1]- Running yes >&/dev/null &
[2]+ Running tail -f mod.sh &

Thursday, November 14, 13

ScazLab

59

Bash Jobs - Changing Process
States

[1]- Running yes >&/dev/null &
[2]+ Running tail -f mod.sh &

3.To move yes to foreground
- $ fg %1 or $ fg %- or $ %1 or $ %-

4.Finally, yes is running in the foreground

Thursday, November 14, 13

ScazLab

60

Links

• More Bash Examples

- http://linuxconfig.org/bash-scripting-tutorial

- https://www.cac.cornell.edu/VW/Linux/

• Advanced Scripting Next Time

- Awk
- Sed
- Cron
- Advanced SSH

Thursday, November 14, 13

http://linuxconfig.org/bash-scripting-tutorial
http://linuxconfig.org/bash-scripting-tutorial
https://www.cac.cornell.edu/VW/Linux/
https://www.cac.cornell.edu/VW/Linux/

ScazLab

61

Thanks!
Questions?

Thursday, November 14, 13

